
Chapter 3

Linear systems

3.1 Motivation for the matrix exponent

First I will study linear systems with constant coefficients of the form

ẋ = Ax, x(t) ∈ Rk, A ∈Mk(R), (3.1)

where the notation Mk(R) means the real vector space of square real k× k matrices. Additionally to
(3.1) I also consider the initial value problem for (3.1) with the initial condition

x(0) = x0 ∈ Rk, (3.2)

where the initial time moment can be taken to be zero without loss of generality since the system is
autonomous.

I know, from the previous section, that problem (3.1), (3.2) can be replaced with the integral
equation

x(t) = x0 +

∫ t

0
Ax(τ) dτ, (3.3)

which can be used to produce Picard’s iterates

x1(t) = x0 +

∫ t

0
Ax0(τ) dτ = (I + tA)x0,

x2(t) = x0 +

∫ t

0
Ax1(τ) dτ =

(
I + tA+

t2A2

2

)
x0,

. . .

xn(t) = x0 +

∫ t

0
Axn−1(τ) dτ =

(
I + tA+ . . .+

tnAn

n!

)
x0.

Assuming that I can continue the process indefinitely, I write that the solution to (3.1), (3.2) is given
by

x(t) =

(
I + tA+ . . .+

tnAn

n!
+ . . .

)
x0 = exp(tA)x0,

where an almost obvious notation exp(tA) = etA is used for the infinite series of matrix functions.
Here is a formal definition.
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Definition 3.1. For the matrix A its matrix exponent is the series

eA = I +A+ . . .+
An

n!
+ . . . .

Using the last definition, I formally (“formally” here means that I did not prove yet that the
corresponding series converges) can write that the solution to (3.1), (3.2) is given by (I still need to
prove that this function gives a solutions to my problem)

x(t) = etAx0. (3.4)

Before proceeding with the analysis of the solution (3.4), I need to make sure that the definition for
the matrix exponent makes sense. This will be the goal of the next section. After this I will turn to
the question how to actually calculate the matrix exponent given an arbitrary matrix A, and, more
importantly, which corollaries I can obtain if I know, at least in principle, the entries of the matrix
exponent.

3.2 Series and linear operators in normed vector spaces

3.2.1 Series

In the vector space X the operation of addition is determined, therefore I can talk about series in the
form

x0 + x1 + . . .+ xn + . . . , xi ∈ X.

For this series, exactly as in the case of the numerical series, I can form the partial sums

sn = x0 + . . .+ xn,

and the series is called convergent if the sequence (sn) converges in X, i.e., there exists an s ∈ X such
that ∥sn − s∥ → 0.

I assume for the following that I deal with a Banach space (so that I can deal with the fundamental
sequences and do not have to know the limit of the partial sums). Then it can be proved (almost
trivially) that an infinite series

∑∞
i=0 xi converges if and only if for any ϵ > 0 there exists N(ϵ) such

that ∥∥∥∥∥
n∑

i=m

xi

∥∥∥∥∥ ≤ ϵ

whenever n ≥ m > N . (This is just a restatement of the fact that the sequence of the partial sums is
fundamental).

Now with the series
∑∞

i=0 xi consider the series of real numbers
∑∞

i=0 ∥xi∥. If the latter series
converges than it is said that the former series converges absolutely.

Lemma 3.2. Let X be a Banach space. If the series
∑∞

i=0 xi converges absolutely then it is convergent.

Proof. ∥∥∥∥∥
n∑

i=m

xi

∥∥∥∥∥ ≤
n∑

i=m

∥xi∥.

�
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3.2.2 Linear operators

Consider a mapping of the normed vector space X into the normed vector space Y :

L : X −→ Y.

This mapping is called a linear operator, if

L(αx1 + x2) = αLx1 + Lx2, x1, x2 ∈ X.

A linear operator L is bounded if ∥Lx∥ ≤M∥x∥ for some real number M ≥ 0 for all x ∈ X (note that
the norms in the last inequality are from two different spaces).

Exercise 3.1. Prove that linear operator L : X −→ Y between two normed vector spaces is 1)
continuous if and only if it is continuous at 0, and 2) it is continuous if and only if it is bounded.
Recall that A is continuous at a point x ∈ X if xn → x in X implies Lxn → Lx in Y and it is
continuous if it is continuous at every point of its definition.

Exercise 3.2. Can you give an example of a linear discontinuous operator?

Linear bounded operators themselves form a vector space L (X,Y ), if the addition and multipli-
cation by scalars is understood pointwise. Therefore, it is natural to consider the smallest possible
constant M in the definition of the bounded operator as a norm on L (X,Y ).

Definition 3.3. Let L ∈ L (X,Y ), where X,Y are normed vector spaces. I define the (uniform)
norm of L to be

∥L∥ = inf{M : ∥Lx∥ ≤M∥x∥ for all x ∈ X}.

Exercise 3.3. Prove that the definitions of the norm of a linear continuous operator

∥L∥ = sup
x ̸=0

∥Lx∥
∥x∥

= sup
∥x∥=1

∥Lx∥ = sup
∥x∥≤1

∥Lx∥

are equivalent.

Since I consider only bounded linear operators then the last definition makes perfect sense. It
immediately implies that

∥Lx∥ ≤ ∥L∥∥x∥.

Let me check the norm axioms. It is obviously nonnegative and equal to zero if and only if L is the
zero operator. Furthermore,

∥αL∥ = sup
x∈X,x ̸=0

∥αLx∥
∥x∥

= α∥L∥.

To prove the triangle inequality, consider

∥(A+B)(x)∥ ≤ ∥Ax∥+ ∥Bx∥ ≤ ∥A∥∥x∥+ ∥B∥∥x∥,

therefore

∥A+B∥ = sup
x∈X,x ̸=0

∥(A+B)(x)∥
∥x∥

≤ ∥A∥+ ∥B∥.
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Moreover,
∥ABx∥ ≤ ∥A∥∥Bx∥ ≤ ∥A∥∥B∥∥x∥

implies
∥AB∥ ≤ ∥A∥∥B∥.

The last inequality can be used to see that

∥Aj∥ ≤ ∥A∥j .

The sequence (An) of bounded linear operators in L (X,Y ) is said to converge uniformly (or in
the operator norm topology) to A if ∥An − A∥ → 0. As an exercise, prove that the space of bounded
linear operators with the uniform norm is a Banach space if Y is a Banach space.

From this point I will concentrate on the special case when X = Y = Rk, and the linear operators
are represented (in some bases) by the square matrices A, B, . . . Matrix A represents a bounded
linear operator, and its norm is given by

∥A∥ = max
x∈Rk, x̸=0

|Ax|
|x|

,

where again for a norm on Euclidian space Rk I use the notation | · |.
Now consider the series

I +A+
A2

2!
+ . . .

and the corresponding series of norms

1 + ∥A∥+ ∥A2∥
2!

+ . . . .

Using the fact that ∥Aj∥ ≤ ∥A∥j I see that the partial sums are bounded by the partial sums of the
series for ea, a := ∥A∥:

1 + a+
a2

2!
+ . . . = ea,

I know that the last series converges to ea for any a ∈ R, and therefore the original series converges
uniformly and absolutely, and hence there exists the sum of this series which I can denote eA. I also
proved that ∥eA∥ ≤ e∥A∥. The validity of the definition of the matrix exponent was justified.

Exercise 3.4. Using the definition, calculate the matrix exponent for

(a)

[
1 0
0 2

]
, (b)

[
0 1
0 0

]
, (c)

[
0 1
−1 0

]
, (d)

0 1 0
0 0 1
0 0 0

 .
Exercise 3.5. Consider the set X of all polynomials of degree less than k.

1. Show that this set is a vector space. What is its dimension?

2. Consider the operator A, which acts on the vector space X by taking the derivative: P (x) →
d
dxP (x). Show that A is a linear operator.

3. Consider also the operator Ht that shifts a polynomial P (x) ∈ X by t: i.e., P (x) → P (x + t).
Show that Ht is a linear operator.

4. Prove that etA =Ht.
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3.3 Properties of the matrix exponent

1. Matrix exponent is a linear bounded operator.

2. Assume that matrix A is diagonal, with diagonal elements λ1, . . . , λk. Matrix exponent in this
case is also diagonal, with diagonal elements eλ1 , . . . , eλk (since Am are all diagonal). Therefore,
the calculation of eA is simplest in the basis in which A is diagonal.

3. The family of linear operators etA : Rk −→ Rk defines a one-parameter group of linear transfor-
mations of Rk (i.e., in other words, the family {etA} defines a linear flow). This actually follows
from the general theorem from the previous chapter, but I will show it directly. First, the group
property has to be proved

e(t+s)A = etAesA.

To prove it, consider(
I + tA+

t2A2

2!
+ . . .

)(
I + sA+

s2A2

2!
+ . . .

)
=

I + (t+ s)A+

(
t2

2
+ ts+

s2

2

)
A2 + . . . ,

which proves the formula. To justify that we can multiply infinite series remember that these
series converge absolutely.

Second, one needs to show that
d

dt
etA = AetA,

which follows from the formal differentiation of the series for the matrix exponent (again, the
absolute convergence of the series allows term-wise differentiation).

4. The previous point actually proves

Theorem 3.4. The solution to the system

ẋ = Ax

with the initial condition x(0) = x0, is given by

x(t) = etAx0, t ∈ R.

Proof. Using the formula for the derivative of the matrix exponent we see that x is actually a
solution. Since e0 = I then we also have x(0) = x0, and the theorem of uniqueness yields that
any solution to our problem coincides with etAx0. �

5. Let A : Rk −→ Rk be a linear operator, and ϵ ∈ R.

Lemma 3.5.
det(I + ϵA) = 1 + ϵ trA+O(ϵ2).
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Proof. The determinant of the operator I + ϵA is equal to the product of the corresponding
eigenvalues 1 + ϵλj , where λj are the eigenvalues of A. Therefore,

det(I + ϵA) =

k∏
j=1

(1 + ϵλj) = 1 + ϵ

k∑
j=1

λj +O(ϵ2).

�

Theorem 3.6.
det eA = etrA.

Proof. I can define the matrix exponent also using the limit

eA = lim
m→∞

(
I +

A

m

)m
.

I have

det eA = det

(
lim
m→∞

(
I +

A

m

)m)
= lim

m→∞

(
det

(
I +

A

m

)m)
,

since the determinant is a continuous function (as a polynomial). Next, using the previous
lemma, (

det

(
I +

A

m

))m
=

(
1 +

1

m
trA+O(

1

m2
)

)m
= etrA.

�

Exercise 3.6. Prove that the matrix exponent can be equivalently defined as

eA = lim
m→∞

(
I +

A

m

)m
.

Therefore, I proved that the operator A is non-degenerate (det eA > 0) and preserve the orien-
tation of the space (recall that the determinant of a matrix is the oriented volume of a paral-
lelepiped, whose edges are given by the columns of the matrix, and the determinant of a linear
operator A is the oriented volume of the image of the unit cube under the mapping A).

Corollary 3.7. The phase flow {φt} of the linear equation

ẋ = Ax, x(t) ∈ Rk

changes the volume of any figure in eat times during the time t. Here a = trA.

Proof. Indeed
detφt = det etA = etr tA = et trA.

�

If trA = 0 then the phase flow of the linear system preserves the volume.
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6. In general, if AB ̸= BA then

exp(A+B) ̸= exp(A) exp(B).

Lemma 3.8. If A and B commute, i.e.,

[A,B] := AB −BA = 0,

then
exp(A+B) = exp(A) exp(B).

Exercise 3.7. Prove Lemma 3.8.

Exercise 3.8. Show that
(
etA
)−1

= e−tA.

Exercise 3.9. Show that if A is skew-symmetric them eA is orthogonal. Show that if A is skew-
Hermitian then eA is unitary.

Exercise 3.10. Consider matrices

A =

[
1 −1
−1 1

]
, B =

[
−1 1
0 0

]
.

Find
etA, etB, et(A+B)

and conclude that in general
eAeB ̸= eA+B.

Exercise 3.11. To prove that etAx0 gives all solutions to ẋ = Ax I appealed to the general uniqueness
theorem from the previous section. This can be avoided as follows. Let x be an arbitrary solution to
ẋ = Ax. Consider y(t) = e−tAx(t) and show that ẏ(t) = 0 therefore, x(t) = etAx0.

Exercise 3.12. Is there a real 2× 2 matrix S such that

eS =

[
−1 0
0 −4

]
?

Exercise 3.13. Show that if an operator A : Rk −→ Rk leaves invariant a subspace E ∈ Rk (that
is, Ax ∈ E for all x ∈ E) then etA also leaves E invariant.

Exercise 3.14. Suppose that the linear operator A : Rk −→ Rk has a real eigenvalue λ < 0. Show
that the equation ẋ = Ax has at least one nontrivial solution x(t) such that

lim
t→∞

x(t) = 0.

3.4 Computation of the matrix exponent

Lemma 3.9. Let P be a non-degenerate matrix, and A = PBP−1 for some matrix B. Then

eA = P eBP−1.

Proof.
(PBP−1)m = PBmP−1.

�
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3.4.1 The case of real eigenvalues

From the linear algebra course I know that if the matrix A has k eigenvalues (non necessarily distinct)
such that the corresponding eigenvectors {v1, . . . ,vk} form a basis of Rk then matrix P composed
from the eigenvectors satisfies (which can be directly checked)

AP = PΛ,

and Λ = diag(λ1, . . . , λk). Here
P = (v1| . . . |vk),

i.e., the k-th eigenvector is the k-th column of P . Therefore, the IVP

ẋ = Ax, x(t) ∈ Rk,

has the unique solution
x(t) = P etΛP−1x0.

Or, denoting, ξ = P−1x0, I find a more convenient form to represent the general solution

x(t) =

k∑
j=1

ξjvje
λjt.

3.4.2 The case of complex eigenvalues

Assume now that A : Ck −→ Ck and consider a complex system of ODE

ż = Az,

whose solution is given by z(t) = etAz0, which is a complex valued function of a real argument.
Assume that the linear operator A is such that Ck =

⊕k
j=1C, i.e. there are k complex eigenvalues

whose eigenvectors form a basis of Ck. Then exactly as in the real case I find that

z(t) = P etΛP−1z0 =

k∑
j=1

ξjvje
λjt

is the general solution, however now ξ ∈ Ck, vj ∈ Ck, λj ∈ C.
If A is real, then I immediately have that for each complex eigenvalue λj its complex conjugate

λj is also an eigenvalue, with the corresponding eigenvectors vj and vj . Moreover, if z is a solution
then z is also a solution. This implies that if z0 is real, then z is also real (due to the uniqueness
theorem). The solution can be real if and only if the arbitrary constants ξj are such that ξj is real if
λj is real, and ξj and ξj are two arbitrary constants corresponding to λj and λj . This yields that the
real valued solution will be given as

x(t) =
ν∑
j=1

ξjvje
λjt +

ν+µ∑
j=ν+1

(
ξjvje

λjt + ξjvje
λjt
)
=

ν∑
j=1

ξjvje
λjt + 2

ν+µ∑
j=ν+1

Re
(
ξjvje

λjt
)
,
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where the first ν eigenvalues are real and the rest are complex conjugate (µ pairs). The last formula
can be rewritten as

x(t) =

ν∑
j=1

ξjvje
λjt + ην+1Re(vν+1e

λν+1t) + ην+2 Im(vν+2e
λν+2t) + . . . ,

where now all ξj and ηj are all real.

Exercise 3.15. Prove that for the system ż = Az with the real A if z is a solution then z is also a
solution.

The last representation allows me to get the following geometric picture. I assume that I have
k eigenvalues of A such that ν are real and µ complex conjugate pairs, and the list of eigenvectors
forms a basis of Ck. Then Rk can be represented as a direct sum of invariant with respect to A ν one
dimensional and µ two dimensional subspaces. Indeed, if I have a pair of conjugate eigenvalues λ and
λ with the eigenvectors v and v, then consider their real and imaginary parts:

x =
v + v

2
∈ Rk, y =

v − v
2i

∈ Rk,

which are linearly independent. The subspace spanned v and v is invariant in Ck, therefore, the
subspace spanned by x and y is also invariant in Ck. Their linear combination is real if and only if
the coefficients are real, and theretofore forms a two dimensional invariant subspace of A in Rk.

Exercise 3.16. Carefully fill in all the missing details in the reasoning above.

Corollary 3.10. Let x = (x1, . . . , xk)
⊤ be the solution of the linear system of real ODE with the matrix

A. Let all the eigenvalues of A be simple. Then each of the functions xj is a linear combination of
eλkt and eαkt sinωkt, e

αkt cosωkt, where λk are the real and αk ± iωk are the complex eigenvalues of
A.

Corollary 3.11. Let A be a real square matrix with simple eigenvalues. Then each of the elements
of etA is a linear combination of eλkt, eαkt sinωkt, e

αkt cosωkt, where λk are the real and αk ± iωk are
the complex eigenvalues of A.

3.4.3 The case of multiple eigenvalues

In the eigenvalue problem Av = λv the eigenvalues are the roots of the characteristic polynomial

det(A− λI) = 0 =

l∏
j=1

(λ− λj)
aj .

The numbers aj are called the algebraic multiplicities of the eigenvalues λj , and

bj = dimker(A− λjI)

are the geometric multiplicities. In general I always have that bj ≤ aj , and if bj < aj then, as it is
known from the course of linear algebra, the operator A cannot be written in a diagonal form even
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as an operator on Ck. Instead, Jordan’s blocks appear, for which I would like to calculate the matrix
exponent.

Let A be such that

A =


λ 1

λ
. . .
. . . 1

λ

 .
To calculate the matrix exponent I will use the fact that

A = λI +N ,

where N is nilpotent (a matrix B is nilpotent if there exists a natural number n such that Bn = 0).
Since I commutes with anything, I have

eA = eλIeN .

And using the fact

N l =


0 . . . 1

. . .

1
...
0

 ,
I obtain

etN =



1 t t2/2 . . . tn−1/(n− 1)!

1 t
. . .

...

1
. . . t2/2
. . . t

1


,

and
etA = eλtetN .

Let λ be a real number. A quasi-polynomial with the exponent λ is the product eλtP (t), where
P (t) is a polynomial. The degree of P is called the degree of the quasi-polynomial. If λ is fixed then
the set of all quasi-polynomials of degree less than k is a vector space (prove it and find its dimension).

Corollary 3.12. Let A : Ck −→ Ck be a linear operator, λ1, . . . , λm be the eigenvalues with the
algebraic multiplicities a1, . . . , am, t ∈ R. Then every element of the matrix etA is a sum of quasi-
polynomials of the variable t with the exponents λj of degrees less than aj.

Corollary 3.13. Let x be a solution to ẋ = Ax. Then each component of the vector x is a sum of
quasi-polynomials of variable t with the exponents λj of degrees less than aj:

xi(t) =

m∑
j=1

eλjtPij(t),

where Pij(t) is a polynomial of degree less than aj.
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Corollary 3.14. Let A : Rk −→ Rk be a linear operator, λj , 1 ≤ j ≤ m, be its real eigenvalues with
algebraic multiplicities aj, αj ± iωj , 1 ≤ l ≤ r, be complex eigenvalues with algebraic multiplicities
dj. Then each element of the matrix etA and each component of the solution to ẋ = Ax is a sum of
complex quasi-polynomials with exponents λj , αj + iωj of degrees less than aj and dj respectively.

Remark 3.15. Contrary to the case when all the eigenvalues of A are simple, I do not provide here
the exact form of the general solution to ẋ = Ax in the case when A has multiple eigenvalues. It is
very seldom in applications that someone actually needs to calculate this exact form.

Exercise 3.17. Calculate etA for

(a)

[
5 −6
3 −4

]
, (b)

[
0 1
1 0

]
, (c)

2 0 0
0 3 0
0 1 3

 .
Exercise 3.18. Find eA, where

A =

[
cos t sin t
− sin t cos t

]
.

Exercise 3.19. Let a and b be two distinct eigenvalues of 2× 2 matrix A. Show that

etA =
eat − ebt

a− b
A+

aebt − beat

a− b
I.

3.5 Planar linear ODE systems with constant coefficient

Since in the case of semisimple A (operator A is called semisimple if it is diagonalizable over Ck) the
phase space Rk splits into the direct sum of one and two dimensional subspaces, a lot of insight about
the behavior of solutions to ẋ = Ax can be gained by studying two dimensional systems of the form

ẋ = Ax, x(t) ∈ R2. (3.5)

I start with a basic fact from linear algebra:

Theorem 3.16. Let A be a 2× 2 real matrix. Then there exists a real invertible 2× 2 matrix P such
that

P−1AP = J ,

where matrix J is one of the following three matrices in real Jordan’s normal form

(a)

[
λ1 0
0 λ2

]
, (b)

[
λ 1
0 λ

]
, (c)

[
α β
−β α

]
.

Proof. Since the characteristic polynomial has degree two, it may have either two real roots, two
complex conjugate roots, or one real root multiplicity two.

(a)I assume that I have two distinct real roots λ1 ∈ R ̸= λ2 ∈ R with the corresponding eigenvec-
tors v1 ∈ R2 and v2 ∈ R2 or a real root λ ∈ R multiplicity two which has two linearly independent
eigenvectors v1 ∈ R2 and v2 ∈ R2. Matrix P now can be taken simply as

P = (v1 | v2),
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i.e., the j-th column is the j-th eigenvector. The eigenvectors corresponding to distinct eigenvalues
are linearly independent, hence P is invertible. Now

AP = (Av1|Av2) = (λ1v1|λ2v2) = PJ .

For the case (b), I assume that there is one real root of the characteristic polynomial with the
eigenvector v1. Then there is another vector v2, which satisfies

(A− λI)v2 = v1,

which is linearly independent of v1. Now take P = (v1 | v2), and

AP = (λv1 | v1 + λv2) = PJ ,

where J as in (b).
Finally, in the case (c) I have λ1,2 = α ± iβ as eigenvalues and the corresponding eigenvectors

v1 ± iv2, where v1,v2 are real nonzero vectors. Let me take P = (v1 | v2). Since

A(v1 + iv2) = (α+ iβ)(v1 + iv2),

I have
Av1 = αv1 − βv2, Av2 = αv2 + βv1.

Now
AP = (αv1 − βv2 | βv1 + αv2) = PJ ,

where J as in (c). The only missing point is to prove that v1 and v2 are linearly independent, which
is left as an exercise. �

Now I only need to calculate the matrix exponent for all three cases to solve any planar system of
the form (3.5). I have in the case (a) that

etA =

[
eλ1t 0
0 eλ2t

]
,

in case (b), using the decomposition into two commuting matrices,

etA = eλt
[
1 t
0 1

]
,

and finally, in the case (c), using [
α β
−β α

]
=

[
α 0
0 α

]
+

[
0 β
−β 0

]
,

one can show, using the definition of the matrix exponent, that

etA = eαt
[
cosβt sinβt
− sinβt cosβt

]
.

Exercise 3.20. Fill in the missing details.
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For the two dimensional systems it is convenient to represent solutions graphically as parametrically
defines curves t 7→ x(t) ∈ R2, for which the changes of the variable t from smaller to bigger values
define the direction along these curves. Using the terminology of the dynamical system theory, R2

in this case is called the phase or state space, and the images of solutions x in the phase space
parameterized by the time t are called the phase curves or phase orbits. So my task is, given the
matrix A, is to understand the structure of the orbits on the phase plane — the phase portrait.

First, I assume for simplicity that λ1λ2 ̸= 0. In this case matrix A is non-degenerate, and hence
the only solution to the algebraic system Ax = 0 is the trivial one, x̂ = (0, 0). This point is called
an equilibrium, note that if I have the initial conditions at this point, I will stay at this point for
ever. Second, it is enough to understand the structure of the phase portraits of the systems with the
matrices in the Jordan normal form, because all other phase portraits are obtained from these by the
application of a non-degenerate linear operator P , which corresponds to possible stretching, rotations,
and/or reflections.

(a) Case of the two real eigenvalues. The general solution to (3.5) with the matrix (a) is given by

x(t;x0) =

[
eλ1t 0
0 eλ2t

]
x0 =

[
eλ1tx01
eλ2tx02

]
.

The phase curves can be found as solutions to the first order ODE

dx2
dx1

=
λ2x2
λ1x1

,

which is a separable equation, and the directions on the orbits are easily determined by the signs of
λ1 and λ2 (i.e., if λ1 < 0 then x1(t) → 0 as t→ ∞).

Consider a specific example with 0 < λ1 < λ2. In this case I have that all the orbits are “parabolas,”
and the direction on the orbits is from the origin because both λ’s are positive. The only slightly
tricky part here is to determine which axis the orbits approach as t → −∞. This can be done by
looking at the explicit equations for the orbits (you should do it) or by noting that when t → −∞
eλ1t ≫ eλ2t and therefore x1 component dominates x2 in a small enough neighborhood of (0, 0) (see
Fig. 3.1, left). The obtained phase portrait is called topological node (“topological” is often dropped),
and since the arrows point from the origin, it is unstable (I will come back shortly to the discussion
of stability).

As another example consider the case when λ2 < 0 < λ1. In this case (prove it) the orbits are
actually “hyperbolas” on (x1, x2) plane, and the directions on them can be identifies by noting that
on x1-axis the movement is from the origin, and on x2-axis it is to the origin. Such phase portrait is
called saddle (see Fig. 3.1, middle). All the orbits leave a neighborhood of the origin for both t→ ±∞
except for five special orbits: first, this is of course the origin itself, second, two orbits on x1-axis that
actually approach the origin if t→ −∞, and, third, two orbits on x2-axis, which approach the origin
if t → ∞. The two orbits on x1-axis form the unstable manifold of the point x̂ = (0, 0), and the
orbits on x2-axis form the stable manifold of x̂. These orbits are also called the saddle’s separatrices
(singular, separatrix ).

There are several other cases to consider:

• 0 < λ1 < λ2: unstable node (shown in the figure)

• 0 < λ2 < λ1: unstable node
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x1

x2

x1

x2

x1

x2

Figure 3.1: Left: Unstable node. Middle: Saddle. Right: Improper stable node

• 0 < λ1 = λ2: unstable node

• λ1 < λ2 < 0: stable node

• λ2 < λ1 < 0: stable node

• λ1 = λ2 < 0: stable node

• λ1 < 0 < λ2: saddle

• λ2 < 0 < λ1: saddle (shown in the figure)

You should sketch the phase portraits for each of these cases. Also keep in mind that for now I exclude
cases when one or both λ’s are zero.

(b) I assume that λ < 0 (the case λ > 0 left as an exercises). Now, first, I see from the general
solution (write it down!) that x(t;x0) → 0 as t→ ∞, moreover,

dx2
dx1

→ 0

as t → ∞, therefore the orbits should be tangent to x1-axis. The phase portrait (Fig. 3.1, right) is
sometimes called an improper stable node.

(c) The flow of (3.5) is given by

x(t;x0) = eA3tx0 = eαt
[
cosβt sinβt
− sinβt cosβt

]
x0.

To determine the phase portrait observe that if α < 0 then all the solutions will approach the origin,
and if α > 0, they will go away from the origin. I also have components of eJt, which are periodic
functions of t, which finally gives us the whole picture: if α < 0 and β > 0 then the orbits are the
spirals approaching the origin clockwise, if α > 0 and β > 0 then the orbits are spiral unwinding from
the origin clockwise, and if α = 0 then the orbits are closed curves. An example for α < 0 and β < 0
in given in Fig. 3.2, this phase portrait is called the stable focus (or spiral).
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x1

x2

x1

x2

Figure 3.2: Left: Stable focus. Right: Center

If I take α = 0 and β < 0 then the phase portrait is composed of the closed curves and called the
center. See Fig. 3.2, right.

In the general situation, to determine the direction on the orbits, I can use the original vector field.
For example, in the case α = 0 β < 0 I have that for any point x1 = 0 and x2 > 0 the derivative of x2
is negative, and therefore the direction is counter clockwise.

Example 3.17. Consider system (3.5) with

A =

[
1 3
1 −1

]
.

I find that the eigenvalues and eigenvectors are

λ1 = −2, v⊤1 = (−1, 1), λ2 = 2, v⊤2 = (3, 1).

Therefore, the transformation P here is

P =

[
−1 3
1 1

]
,

and

J = P−1AP =

[
−2 0
0 2

]
.

The solution to the system
ẏ = Jy,

where y = P−1x, is straightforward and given by

y(t;x0) =

[
e−2t 0
0 e2t

]
y0

and its phase portrait has the structure of a saddle (see Fig. 3.3, left). To see how actually the phase
portrait looks in x coordinates, consider the solution for x, which takes the form

x = Py = (v1e
λ1t | v2eλ2t)y0 = C1v1e

λ1t + C2v2e
λ2t,
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where I use C1, C2 for arbitrary constants. Note that x is changing along the straight line with the
direction v1 if C2 = 0, and along the straight line v2 when C1 = 0. The directions of the flow on these
lines coincide with the directions of the flow on the axes for the system in y coordinates (see Fig. 3.3).

y2

y1 x1

x2

v1

v2

Figure 3.3: Saddle point after the linear transformation (left), and the original phase portraits (right).
I have x = Py

To summarize, to sketch a phase portrait of a two-dimensional linear ODE system with detA ̸= 0
one needs: Find the eigenvalues. If these eigenvalues are complex conjugate, λ1 = λ2 = α+iβ, then if
α < 0 it is a stable focus, α > 0 — unstable focus, and if α = 0 it is a center. The direction of rotation
(counter- or clockwise) can be determined by determining the direction of the corresponding vector
field at any point on the plane. If the eigenvalues are real, then the corresponding eigenvectors have
to be found. These eigenvectors define the directions for the straight lines on which the solutions are
invariant (if a solution happens to be on this straight line, then it will never leave it). The directions
on these straight lines are determined by the signs of the corresponding eigenvalues, if the sign is
negative then the direction is to the origin, in the opposite case the direction is from the origin. The
actual direction along which other orbits enter the origin (for t to plus or minus infinity) is determined
by the absolute values of the eigenvalues. If one finds one eigenvalue multiplicity two with only one
linearly independent eigenvector, then this eigenvector determines the direction along which the orbits
approach the origin.

I can summarize all the information on the types of linear planar systems in one parametric portrait
of (3.5). The characteristic polynomial is

P (λ) = λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = λ2 + λ trA+ detA,

I hence have

λ1,2 =
trA±

√
(trA)2 − 4 detA

2
.

Using the trace and determinant as the new parameters I can actually present all possible types of
planer linear systems in one Fig. 3.4.
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trA

detA

detA =
(trA)2

4

saddlessaddles

stable nodes unstable nodes

stable foci unstable foci

Figure 3.4: The type of the linear system depending on the values of trA and detA. The centers here
are situated where detA > 0 and trA = 0

Exercise 3.21. Sketch the phase portraits for the linear planar system ẋ = Ax, where A is given by

(a)

[
−1 0
2 −2

]
, (b)

[
1 2
0 2

]
, (c)

[
2 1
1 1

]
, (d)

[
−1 2
−1 1

]
, (e)

[
1 −2
−2 4

]
.

Classify the origin for these systems, and identify in each case those vectors u ∈ R2 such that
x(t;u) → 0.

Exercise 3.22. Which value (if any) of the parameter k in the following matrices makes the origin a
sink for the corresponding differential equation ẋ = Ax with A as follows:

(a)

[
a −k
k 2

]
, (b)

[
3 0
k −4

]
, (c)

[
k2 1
0 k

]
, (d)

 0 −1 0
1 0 0
−1 0 k

?
Exercise 3.23. LetA =

[
a b
c d

]
have non-real eigenvalues. Show that b ̸= 0. Show that the nontrivial

solution curves to ẋ = Ax are spiral or ellipses that are oriented clockwise if b > 0 and counterclockwise
if b < 0.

Hint: Consider the sign of
d

dt
arctan

x2(t)

x1(t)
.

Exercise 3.24. Classify and sketch the phase portraits of planar differential equation ẋ = Ax, where
A has a zero eigenvalue.

Exercise 3.25. Let A be k × k real matrix, where k is odd. Show that there exist a nonperiodic
solution to ẋ = Ax.

Exercise 3.26. Let problem ẋ = Ax with real A = (aij)2×2 matrix have one periodic solution. Show
that all the solutions are periodic.
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In a similar way, especially for semisimple operators, I can discuss phase portraits for higher
dimensional linear systems of ODE.

Exercise 3.27. Sketch phase portraits for the system ẋ = Ax with eigenvalues λ1, λ2, λ3, where A
is a 3× 3 matrix if

(a) λ1 < λ2 < λ3 < 0,

(b) λ1 < 0, λ2 = α+ ıβ, α < 0, β > 0,

(c) λ1 < 0, λ2 = α+ ıβ, α > 0, β > 0,

(d) λ1 < 0, λ2 = λ3, and A is semisimple,

(e) λ1 < λ2 < 0 < λ3.

What is more important, however, is that the explicit form of the solutions to the linear systems
allows important qualitative conclusions. First, let me introduce the term stability rigorously for the
first time.

Definition 3.18. The linear system of ODE (3.5) is called (Lyapunov) stable, if all solutions remain
bounded for t→ ∞. It is called (globally) asymptotically stable if all solutions converge to 0 if t→ ∞.
If system is not stable it is called unstable.

The explicit form of solutions to the linear system with constant coefficients implies

Theorem 3.19. The linear system (3.5) is asymptotically stable if and only if the eigenvalues λj of
A satisfy Reλj < 0. Moreover, in this case there exist constants C > 0 and α > 0 such that

|etAx0| ≤ Ce−tα, t ≥ 0.

The linear system (3.5) is stable if and only if the eigenvalues of A satisfy Reλj ≤ 0, and algebraic
multiplicities of the eigenvalues with Reλj = 0 coincide with their geometric multiplicities. Moreover,
in this case there exists C > 0 such that

|etAx0| ≤ C, t ≥ 0.

The linear system (3.5) is unstable if and only if there exists an eigenvalue λj of A that satisfies
Reλj > 0, or there exists an eigenvalue λj of A that satisfies Reλj = 0 and its algebraic multiplicity
is strictly bigger than its geometric multiplicity.

Exercise 3.28. Prove Theorem 3.19.

Finally, consider a non-homogeneous system

ẋ = Ax+ g(t), (3.6)

where g ∈ C(I;Rk). Exactly as in one dimensional case I can use the variation of the constant method
to show that the general solution is given by

x(t) = etAx0 +

∫ t

0
e(t−τ)Ag(τ) dτ.

Note the structure of the general solution, which consists of two parts: The general solution to the
homogeneous equation plus a particular solution to the non-homogeneous one.
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Exercise 3.29. Prove the formula for the general solution to (3.6).

Exercise 3.30. Using the variation of the constant method solve the following nonhomogeneous
system

ẋ =

[
0 1
−4 0

]
x+

[
0

sin 2t

]
.

Exercise 3.31. Suppose T : Rk −→ Rk is an invertible linear operator and c ∈ Rk is a nonzero
constant vector. Show that there is a change of coordinates of the form

x = Py + b, b ∈ Rk,

transforming the nonhomogeneous equation ẋ = Tx + c into homogeneous form ẏ = Sy. Find
P , b, S.

Exercise 3.32. Solve
x′ = y, y′ = 2− x.

Hint: The previous problem.

3.6 Linear equations of the k-th order

3.6.1 The general theory

The linear ordinary differential equation of the k-th order with constant coefficients takes the form

x(k) + ak−1x
(k−1) + . . .+ a1x

′ + a0x = g(t). (3.7)

It requires k initial conditions

x(0) = x0, x′(0) = x1, . . . x(k−1)(0) = xk−1.

It is called homogeneous if g(t) = 0 and non-homogeneous otherwise. If I convert equation (3.7) into
a system of the form (3.5), then the matrix A is given by

A =


0 1

0 1
. . .

. . .

0 1
−a0 −a1 . . . . . . −ak−1

 ,

which has a very special form (sometimes it is called a companion matrix ). Using the expansion of
the determinant det(A− λI) with respect to the last row, I find that the eigenvalues are the roots of
the characteristic polynomial

λk + ak−1λ
k−1 + . . .+ a1λ+ a0 = 0.

Moreover, the geometric multiplicity of every eigenvalue is one (can you prove this claim?), which
implies that the general solution to the homogeneous equation is given as a linear combination of

eλjt, teλj , . . . , taeλjt, j = 1, . . . ,m, 0 ≤ a < cj ,
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wherem is the number of distinct eigenvalues and cj is the algebraic multiplicity of the j-th eigenvalue.
If there is a pair of complex conjugate eigenvalues λ and λ of the form λ = α± iβ, then the above is
replaced with

eαt cosβt, eαt sinβt, . . . , taeαt cosβt, taeαt sinβt, 0 ≤ a < c,

where c is the algebraic multiplicity of λ (and hence of λ).

Exercise 3.33. Show that the characteristic polynomial of the companion matrix indeed has the
required form.

Exercise 3.34. Solve
k∑
j=0

djx

dtj
(t) = 0.

Exercise 3.35. For which a, b ∈ C all the solutions to

ẍ+ aẋ+ bx = 0

are bounded for −∞ < t <∞?

Exercise 3.36. For which a and b all solutions to

ẍ+ aẋ+ bx = 0

tend to zero as t→ +∞?

Exercise 3.37. Consider the equation

x′′′ + ax′′ + bx′ + cx = 0.

Find necessary and sufficient conditions on a, b, c to guarantee that the origin is asymptotically stable.

For the nonhomogeneous equation (3.7) it is also possible to write a general formula (using the
same method of the variation of the constants), but sometimes it is more convenient to use the so-called
method of undetermined coefficients, when a particular solution to (3.7) is first guessed, based on the
form of g, in a specific form with arbitrary coefficients, and after this this coefficients are determined.
This method works when g is a quasi-polynomial, i.e., a function of the form

eatP (t),

where a is some constant, and P is a polynomial (note that using Euler’s formula eiθ = cos θ+i sin θ also
includes in this expression the possibilities eatP (t) cos bt and eatP (t) sin bt). What is so special about
quasi-polynomials? They are solutions of some homogeneous linear ODE with constant coefficients!
So, I write (3.7) in a concise form

Lx = g,

where L is a linear k-th order differential operator with constant coefficients, and g itself solves ODE
Hg = 0 (it is said that H annihilates g) then the equation

HLx = Hg = 0

is a homogeneous linear ODE with constant coefficients which I know how to solve! In particular, the
knowledge of the form of solutions of the homogeneous ODE yields the following rule of thumb:
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Let g(t) = eatPn(t), where a is some constant and Pn(t) is a polynomial of degree n. Then
a particular solution xp to (3.7) should be looked for in the form

xp(t) = eattcQn(t),

where c is the algebraic multiplicity of a as an eigenvalue of the homogeneous equation (if a
is not an eigenvalue then c = 0), and Qn(t) is a polynomial of degree n with undetermined
coefficients.

For example, if I need to solve x′′ − 2x′ + x = et then the rule above implies that xp(t) = At2et,
and to determine A I need to plug this solution into the equation and analyze the result.

Exercise 3.38. Solve

(a) x′′ − x = 2et − t2,

(b) x′′ − 3x′ + 2x = sin t,

(c) x′′ − 4x′ + 5x = e2t sin2 t.

3.6.2 The harmonic oscillator

Consider a mass hanging on a spring (see the figure). The position of the mass at time t in uniquely

0

x

mg

−kss

Figure 3.5: A mass on a spring

defined by one coordinate x(t) along the x-axis, whose direction is chosen to be along the direction of
the force of gravity. The movement of the mass is determined by the second Newton’s law, that can
be stated (for this particular one-dimensional case) as

ma =
∑

Fi,

where m is the mass of the object, a is the acceleration, a = ẍ, and
∑
Fi is the net force applied.

The net force includes the gravity F1 = mg, where g is the acceleration due to gravity, (g ≈ 9.8m/s2

in metric units). The restoring force of the spring is governed by Hooke’s law, which says that the
restoring force in the opposite to the movement direction is proportional to the distance stretched:
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F2 = −k(x + s) if I set the point x = 0 at the equilibrium, and s is the length stretched by the
mass due to gravity. Note that at the equilibrium (x = 0) I must have mg − ks = 0. Here minus
signifies that the force is acting in the direction opposite to the axis direction. When the mass is not
at rest, I can also have damping, which is acting in the direction opposite to the direction of velocity.
Observations say that it is reasonable to assume that the damping is proportional to the speed, when
x is small enough, hence F3 = −cẋ, where c is a constant of proportionality. Finally, I may have that
an external force F4 = F (t) is applied to the mass. Summing,

mẍ = F1 + F2 + F3 + F4 =⇒ mẋ = mg − k(s+ x)− cẋ+ F (t),

and finally, after some simplifications and rearrangements:

mẍ+ cẋ+ kx = F (t), (3.8)

which is a second order linear nonhomogeneous ODE with constant coefficients. The initial conditions
— the initial position and initial velocity — are

x(0) = x0, ẋ(0) = v0. (3.9)

I will consider cases one by one, starting with the simplest one.
Harmonic oscillations. Here I take c = 0 and F (t) ≡ 0. Hence,

mẍ+ kx = 0,

or, after using the new notation w2
0 = k/m

ẍ+ ω2
0x = 0.

This equation has the general solution

xh(t) = C1 cosω0t+ C2 sinω0t,

where C1, C2 are arbitrary constants that are determined by the initial conditions (3.9). For the
following it will be convenient to rewrite the last expression in a different form. Assuming the at least
one of the arbitrary constants is not zero, I have

xh(t) = C1 cosω0t+ C2 sinω0t

=
√
C2
1 + C2

2

(
C1√

C2
1 + C2

2

cosω0t+
C2√

C2
1 + C2

2

sinω0t

)
= A(cosω0t cosφ+ sinω0t sinφ)

= A cos(ω0t− φ),

where instead of the old constants C1, C2 I have new constants A and φ, which can be determined by
the initial conditions (3.9) and related to the old constants as

A =
√
C2
1 + C2

2 , cosφ =
C1√

C2
1 + C2

2

, sinφ =
C2√

C2
1 + C2

2

.

72



T

T =
2π

ω0

x(t) = A cos(ω0t− ϕ)

t

x(t)

A

−A

Figure 3.6: Simple harmonic oscillations

The formula
xh(t) = A cos(ω0t− φ)

gives a simple way to analyze the displacement x(t) at every time moment t.
Trigonometric functions cos and sin describe periodic oscillations that are called simple harmonic

motion. Therefore, the original system ẍ + ω2
0x = 0 is often called the simple harmonic oscillator.

Function cosω0t has the period

T =
2π

ω0
.

The frequency f (number of complete oscillations per time unit, measured usually in hertz (Hz = 1/s))
is defined as the reciprocal of the period:

f =
1

T
=
ω0

2π
,

and ω0 is called the angular frequency (ω0 = 2πf , measured in radians per seconds).
Hence I have that the harmonic oscillator produces periodic motion with the angular frequency

ω0. By subtracting φ I simply shift the graph of my function, and this constant is called the phase.
Finally, the harmonic oscillations are bounded now by A and −A, and this constant is called the
amplitude of oscillations. Therefore, if I am given a simple harmonic oscillator, then its behavior is
defined by the angular frequency

ω0 =

√
k

m
,

which is the intrinsic property of the system, that is why it is sometimes called the natural frequency
of the system, and by the amplitude and phase, which can be found given the initial conditions x0, v0.
Note that the period of oscillations

T = 2π

√
m

k

does not depend on the initial conditions and hence on the amplitude, which is the property of linear
systems. For nonlinear system this does not hold.

Simple harmonic oscillator predicts that the oscillations continue forever, which is not true for the
real systems. The reason for this is that I assumed that there was no damping. Now consider the case
when c ̸= 0.
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F (t) ≡ 0 and c > 0. Hence,
mẍ+ cẋ+ kx = 0.

To solve it I write down the characteristic equation

mλ2 + cλ+ k = 0,

which can be solved as

λ1,2 =
−c±

√
c2 − 4mk

2m
.

Here I need to consider 3 cases:
Overdamped motion. Assume that c2 − 4mk > 0, therefore, the characteristic equation has two

negative real roots λ1, λ2, and the general solution is given by

x(t) = C1e
λ1t + C2e

λ2t.

Depending on the values of C1 and C2 this solution will either never cross zero, or cross it only
once. Moreover, since both λ’s are negative, the solution approaches zero: x(t) → 0 as t → ∞,
which physically means that if the damping is really strong, the mass on a spring will return to its
equilibrium position either without or with one oscillation.

Critically damped motion. Let c2−4mk = 0, then λ = −c/(2m) is the only root of the characteristic
polynomial with multiplicity 2. Therefore,

x(t) = C1e
λt + C2te

λt.

Here the situation is very close to the previous case. Since λ is negative, x(t) → 0 as t → ∞ without
oscillations.

Damped oscillations. Let c2 − 4mk < 0, therefore I have two complex conjugate roots λ1 = λ2 =
α+ iβ, where

α = − c

2m
, β =

√
4mk − c2

2m
=

√
ω2
0 −

( c

2m

)2
.

I have
x(t) = eαt(C1 cosβt+ C2 sinβt),

or using the approach from the simple harmonic oscillator:

x(t) = Aeαt cos(βt− φ),

where A and φ are new arbitrary constants. Note that if I consider A(t) = Aeαt as my “amplitude,”
then, since α < 0, A(t) → 0 as should be expected for damped oscillations. The solution in this
case is not periodic, but sometimes called quasiperiodic, because I observe oscillations with decreasing
amplitude and the quasi-period given by

T =
2π

β
=

2π√
ω2
0 −

(
c

2m

)2 ,
which is larger than the period of simple harmonic oscillations with the angular velocity ω0, as also
should be intuitively expected.
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x(t) = Aeαt cos(βt− ϕ)

x(t)

t

Figure 3.7: Damped oscillations

Exercise 3.39. Sketch the phase portraits in the coordinates (x, ẋ) for all possible cases for the linear
oscillator without an external force.

Now assume that c = 0 and F (t) = F0 cosωt, i.e., the external force is a periodic function with
amplitude F0 and angular frequency ω. I have

ẍ+ ω0x =
F0

m
cosωt.

The solution to this equation is
x(t) = xh(t) + xp(t),

where xh(t) is the general solution to the homogeneous equation and xp(t) is a particular solution to
the nonhomogeneous equation. xh(t) was already found above:

xh(t) = A cos(ω0t− φ).

Now, since cosωt = Re eiωt, consider instead the equation (this is an example of complexification,
moving problem in the complex domain)

z̈ + ω0z =
F0

m
eiωt.

Assume first that iω is not a root of the characteristic polynomial, i.e., ω ̸= ω0. Then

zp(t) = Ceiωt =⇒ C =
F0

m(ω2
0 − ω2)

.

Therefore,

xp(t) = Re zp(t) =
F0

m(ω2
0 − ω2)

cosωt,

and the general solution is

x(t) = A cos(ω0t− φ) +
F0

m(ω2
0 − ω2)

cosωt,

where A and φ are determined by the initial conditions. Note that the general solution is the sum
of two periodic functions with different periods. Will the solution be also periodic? The answer is
generally “no,” for the general solution to be periodic we have to ask that ω0/ω is a rational number.
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Exercise 3.40. Let
f(t) = cosω0t+ cosω1t.

Show that f is periodic if and only if ω0/ω1 ∈ Q (it is said that the frequencies are commeasurable in
this case).

If the angular frequency of the external force approaches the natural frequency of the system, then
|xp(t)| will grow without bounds. To see this, now let ω = ω0. In this case,

zp(t) = Cteiω0t =⇒ C =
F0

2mω0i
,

and hence

xp(t) = Re zp(t) =
F0

2mω0
t sinω0t,

which satisfies xp(t) → ∞ as t→ ∞.
In physics the phenomenon when the amplitude grows without bounds if the natural frequency of

the system equals the angular frequency of the external force is called resonance.

x(t) = At sinω0t

x(t)

t

Figure 3.8: Resonance in the system without damping

Consider now
mẍ+ cẋ+ kx = F0 cosωt.

The general solution is given by the sum

x(t) = xh(t) + xp(t),

where xh(t) was already found above (I assume the damped oscillations occur in the system without
external force):

xh(t) = Aeαt cos(βt− φ).

A particular solution can be found using the same approach as in the case c = 0 and is given by

xp(t) =
F0

m
(
(ω2

0 − ω2) + (cω/m)2
)1/2 cos(ωt− ϕ),

where
tanϕ =

cω

k −mω2
.
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Exercise 3.41. Confirm the expression for xp.

Since xh(t) → 0 as t → ∞ (this is the transient part of the solution), then x(t) → xp(t), which
is called the stationary part of the solution. Hence I conclude that the mass on the spring, when
the damping and external periodic force are taken into account, will produce oscillations with the
frequency equal the frequency of the external force, and with the amplitude given by

F0

m
(
(ω2

0 − ω2) + (cω/m)2
)1/2 ,

which is maximal when (check)

ω2 = ω2
0 −

c

2m
,

provided that ω2
0−c/(2m) > 0. And this value of the angular frequency of the external force is defined

to be resonant.

3.7 Non-autonomous linear systems of ODE. General theory

Now I will study the ODE in the form

ẋ = A(t)x+ g(t), x(t) ∈ Rk, A, g ∈ C(I), (3.10)

where now the matrix A is time dependent and continuous on some I ⊆ R.
The initial condition is now

x(t0) = x0, (t0,x0) ∈ I ×Rk. (3.11)

Theorem 3.20. Let the matrix-function A and the vector-function g be continuous on some interval
I ⊆ R. Then the solution to (3.10), (3.11) exists, unique and extends to the whole interval I.

Proof. Problem (3.10), (3.11) satisfies the conditions of the existence and uniqueness theorem. More-
over, since

|A(t)x+ g(t)| ≤ ∥A(t)∥|x|+ |g(t)| ≤ L|x|+M,

for some L > 0, M > 0, therefore, by Corollary 2.39, this solution can be extended to the whole
interval I. �

Note the global character of the theorem.
Together with (3.10) consider the corresponding homogeneous system

ẋ = A(t)x, x(t) ∈ Rk, A ∈ C(I), (3.12)

Exercise 3.42. For the first order linear homogeneous ODE

ẋ = a(t)x

the solution is given by

x(t) = x0e
∫ t
t0
a(τ) dτ

.
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A naive approach would be to solve problem (3.12) by writing

x(t) = e
∫ t
t0

A(τ) dτ
x0.

Consider the matrix

A(t) =

[
0 0
1 t

]
and find its solution directly. Also find e

∫ t
0 A(τ) dτ and show that at least in this particular case this

formula does not give a solution to the problem.
Explain, what when wrong in this example and give a condition on matrix A(t), t ∈ I such that

the matrix exponent formula would work.

Theorem 3.21 (Principle of superposition).
(a) If x1, x2 solve (3.12) then their linear combination α1x1 + α2x2 also solves (3.12).
(b) If x1, x2 solve (3.10) then their difference x1 − x2 solves (3.12).
(c) Any solution to (3.12) can be represented as a sum of a particular (fixed) solution to (3.10)

and some solution to (3.12).

Proof. (a) and (b) follow from the linearity of the operator d
dt−A(t) acting on the space of continuously

differentiable on I vector functions x : I −→ Rk. To show (c) fix some solution xp to (3.10). Assume
that arbitrary solution to (3.10) is given by x = xp+xh for some function xh. From this, xh = x−xp
and therefore, due to (b), solves (3.12). �

Actually the first point in the last theorem, together with the fact that x = 0 solves (3.12), can be
restated as: The set of solutions to the homogeneous linear system (3.12) is a vector space. Therefore,
it would be nice to figure our what is the dimension of this vector space (in this case any solution can
be represented as a linear combination of basis vectors).

Let me first recall the notion of linear dependence and independence specifically applied to functions
and vector functions.

Definition 3.22. The list of functions x1, . . . , xk defined on I = (a, b) is called linearly dependent on
I if there exist scalars α1, . . . , αk, not equal to zero simultaneously, such that

α1x1(t) + . . .+ αkxk(t) ≡ 0, t ∈ I.

If this list of functions is not linear independent then it is called linearly dependent on I.

Example 3.23. Consider, e.g., the functions 1, t, t2, . . . , tk. These functions are linearly independent
on any I.

Another example of linearly independent functions on any I is given by eλ1t, . . . , eλkt, where all λj
are distinct.

Exercise 3.43. Prove the statements from the example above.

Exercise 3.44. Decide whether these functions are linearly independent or not:

1.
t+ 2, t− 2.
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2.
x1(t) = t2 − t+ 3, x2(t) = 2t2 + t, x3(t) = 2t− 4.

3.
log t2, log 3t, 7, t ≥ 0.

4.
sin t, cos t, sin 2t.

The definition of linear independency verbatim can be used for the vector functions x1, . . . ,xk
on I (write it down).

Let (xj)
k
j=1, xj : I −→ Rk be a list of vector functions. The determinant

W := det(x1| . . . |xk) : I −→ R,

is called the Wronskian. I have the following important lemma.

Lemma 3.24.
(a) If the Wronskian of (xj)

k
j=1 is different from zero at least at one point t0 ∈ I then these

functions are linearly independent.
(b) If (xj)

k
j=1 are linearly dependent then their Wronskian is identically zero on I.

(c) Let (xj)
k
j=1 be solutions to linear system (3.12). If their Wronskian is equal to zero at least at

one point t0 ∈ I then these vector functions are linearly dependent.

Proof. (a) and (b) are the consequences of the standard facts from linear algebra and left as exercises.
To show (c), assume that t0 is such that W (t0) = 0. It means that the linear combination

x = α1x1 + . . .+ αkxk

is such that x(t0) = 0 with not all αj equal to zero simultaneously. Due to the superposition principle,
x solves (3.12) with x(t0) = 0. On the other hand, a vector function x̃ ≡ 0 also solves the same
problem. Due to the uniqueness theorem x ≡ x̃ and therefore {x1, . . . ,xk} are linearly dependent. �

Exercise 3.45. Fill in the missed details in the proof above.

Remark 3.25. For arbitrary vector functions statement (c) from the lemma is not true. Consider,
e.g.,

x1 =

[
0
1

]
, x2 =

[
0
t

]
,

which are linearly independent; their Wronskian, however, is identically zero.

Lemma 3.26. Let matrix X ∈ C(1)(I;Rk2) be invertible at t = t0. Then at t = t0

(detX)′

detX
= tr

(
X ′X−1

)
,

where the prime denotes the derivative with respect to t.
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Proof. Taylor’s formula tells me

X(t0 + h) =X(t0) + hX ′(t0) + o(h), h→ 0.

Now calculate the determinant

detX(t0 + h) = detX(t0) det(I + hB + o(h)),

where
B :=X ′(t0)X

−1(t0).

Since, due to Lemma 3.5, det(I + hB + o(h)) = 1 + h trB + o(h), I have

detX(t0 + h)− detX(t0)

h
= detX(t0)(trB + o(1)),

which proves the lemma. �

Theorem 3.27 (Liouville’s formula or Abel’s identity). Let x1, . . . ,xk solve (3.12) and W be their
Wronskian. Then

W (t) =W (t0) exp

(∫ t

t0

trA(τ) dτ

)
. (3.13)

Proof. If x1, . . . ,xk are linearly dependent, then W (t) ≡ 0 and the formula is true. Assume that
x1, . . . ,xk are linearly independent and X = (x1| . . . |xk) be the matrix, whose j-th column is xj .
This matrix by construction solves the matrix differential equation

Ẋ = A(t)X.

From the previous lemma I have

W ′(t)

W (t)
= tr

(
X ′X−1

)
= tr

(
A(t)XX−1

)
= tr (A(t)) ,

which, after integration, implies (3.13). �

Finally I am ready to prove the main theorem of the theory of linear homogeneous systems of
ODE.

Definition 3.28. A fundamental system of solutions to (3.12) is the set of k linearly independent
solutions. A fundamental matrix solution is the matrix composed of the fundamental set of solutions:

X = (x1| . . . |xk).

Theorem 3.29. The set of all solutions to (3.12) is a vector space of dimension k.

This theorem basically states that to solve system (3.12) one needs to come up with a fundamental
system of solutions, which form the basis of the space of solutions. To find any solution I need to find
k (linearly independent) solutions. This is not true for nonlinear systems, and if I know a hundred (or
more) of solutions to ẋ = f(t, x) it will not help me finding one more solution from those that I have.
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Proof. First, I will show that the fundamental system of solutions exists. For this consider k IVPs for
(3.12) with

xj(t0) = ej , j = 1, . . . , k,

where ej ∈ Rk are the standard unit vectors with 1 at the k-th position and 0 everywhere else. By
construction, W (t0) ̸= 0 and hence (xj)

k
j=1 forms a fundamental system of solutions.

Now consider a solution x to (3.12) with x(t0) = x0. Since ej are linearly independent, I have

x(t0) = α1x1(t0) + . . .+ αkxk(t0).

Consider now the function
x̃(t) = α1x1(t) + . . .+ αkxk(t),

which by the superposition principle solves (3.12) and also satisfies x̃(t0) = x(t0), which, by the
uniqueness theorem, implies that x(t) ≡ x̃(t), which means that any solution can be represented as a
linear combination of the solutions in the fundamental system. �

Corollary 3.30. IfX is a fundamental matrix solution, then any solution to (3.12) can be represented
as

x(t) =X(t)ξ, ξ ∈ Rk,

where ξ is an arbitrary constant vector.
Any two fundamental matrix solutions are related as

X(t) = X̃(t)C,

where C is a constant matrix.

A fundamental matrix solution X satisfying the condition X(t0) = I is called the principal matrix
solution (at t0) and can be found as

Φ(t, t0) =X(t)X−1(t0).

Using the variation of the constant method, it can be shown that if Φ(t, t0) is the principal matrix
solution to (3.12) then the general solution to (3.10) with the initial condition (3.11) can be written
as

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)g(τ) dτ.

Exercise 3.46. Prove the last formula.

3.8 Linear k-th order equations with non-constant coefficients

3.8.1 The general theory

Consider a linear k-th order differential equation

x(k) + ak−1(t)x
(k−1) + . . .+ a1(t)x

′ + a0(t)x = g(t), (3.14)
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where aj , g are assumed to be continuous on I = (a, b). Together with (3.14) consider a linear
homogeneous equation

x(k) + ak−1(t)x
(k−1) + . . .+ a1(t)x

′ + a0(t)x = 0, (3.15)

and initial conditions
x(t0) = x0, x

′(t0) = x1, . . . , x
(k−1)(t0) = xk−1. (3.16)

I know that problem (3.14), (3.16) (or (3.15), (3.16)) can be rewritten in the form of a system of k
first order equations, and therefore all the previous consideration can be applied. Let me spell them
out.

Consider a system of k−1 times continuously differentiable functions x1, . . . , xk. Their Wronskian
is defined as

W (t) = det


x1(t) x2(t) . . . xk(t)
x′1(t) x′2(t) . . . x′k(t)
...

x
(k−1)
1 (t) x

(k−1)
2 (t) . . . x

(k−1)
k (t)

 .
• If W (t0) ̸= 0 then (xj)

k
j=1 are linearly independent.

• Let x1, . . . , xk be solutions to (3.15). If W = 0 at least at one point then these solutions are
linearly dependent.

• Consider vector functions x1, . . . ,xk with components (xj , x
′
j , . . . , x

(k−1)
j ), 1 ≤ j ≤ k. Then

(xj)
k
j=1 and (xj)

k
j=1 are linearly dependent or independent simultaneously.

• The set of solutions to (3.15) is a vector space of dimension k. The set of k linearly independent
solutions to (3.15) is called the fundamental system of solutions.

• If W is the Wronskian of the solutions x1, . . . , xk then I have Liouville’s formula

W (t) =W (t0) exp

(
−
∫ t

t0

ak−1(τ) dτ

)
.

• Using the formula for a particular solution to the nonhomogeneous system, I can write an explicit
solution to (3.15), details are left as an exercise.

Exercise 3.47. Provide proofs for all the statements above.

3.8.2 Examples

Here I will discuss a few approaches of analysis of linear ODE, which can be used for specific equations.

Example 3.31 (Second order equation). Consider

x′′ + a(t)x′ + b(t)x = 0.

If x1, x2 solve this equation then

W (t) =

∣∣∣∣x1(t) x2(t)
x′1(t) x′2(t)

∣∣∣∣
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and Liouville’s formula takes the form∣∣∣∣x1(t) x2(t)
x′1(t) x′2(t)

∣∣∣∣ = C exp

(
−
∫ t

t0

a(τ) dτ

)
.

Sometimes, if one particular solution is known, the second one can be found through the formula
above.

For the special case
x′′ + q(t)x = 0

I have ∣∣∣∣x1(t) x2(t)
x′1(t) x′2(t)

∣∣∣∣ = C.

Or, after simplification,

x′2(t)−
x2(t)

x1(t)
x′1(t) =

C

x1(t)
,

which gives for x2 a linear first order ODE, provided I know x1.

Exercise 3.48. Two particular solutions

y1(t) = t− 1, y2(t) =
t2 − t+ 1

t

are known for the differential equation

(t2 − 2t)y′′ + 4(t− 1)y′ + 2y = 6t− 6.

Find the general solution.

Example 3.32 (Solving nonhomogeneous equation). Assume that I need to solve

x′′ + a(t)x′ + b(t)x = f(t),

and let x1, x2 be a fundamental system of solutions to the homogeneous equation. Let me look for a
solution to the non-homogeneous equation in the form

x(t) = c1(t)x1(t) + c2(t)x2(t),

where c1, c2 are unknown functions to be determined.
I have

x′ = c1x
′
1 + c2x

′
2 + [c′1x1 + c′2x2].

I choose functions c1, c2 such that the expression in the square brackets is equal to zero. Then, plugging
x into the original equation, I find

c′1x1 + c′2x2 = 0,

c′1x
′
1 + c′2x

′
2 = f.

Finally, after solving the last system for c1, c2, I find a particular solution.
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Exercise 3.49. Show that the equation

t2x′′ + tx′ − x = f(t), t > 0

has the general solution

x(t) = C1t+
C2

t
+
t

2

∫ t

t0

f(τ)

τ2
dτ − 1

2t

∫ t

t0

f(τ) dτ.

Hint: to solve the homogeneous equation use the ansatz x(t) = tλ and find λ.

Exercise 3.50. Show that the equation

t2x′′ + tx′ + x = f(t), t > 0

has the general solution

x(t) = C1 cos log t+ C2 sin log t+

∫ t

t0

f(τ)

τ
sin log

t

τ
dτ.

Example 3.33 (Reduction of order). If one non-trivial solution to the homogeneous linear ODE is
known then the order of this equation can be reduced by one.

Consider
x(k) + ak−1(t)x

(k−1) + . . .+ a1(t)x
′ + a0(t)x = 0,

and let x1 ̸= 0 solves it. Use the substitution x(t) = x1(t)v(t), where v is a new unknown function.
The equation for v takes the form (fill in the details)

bk(t)v
(k) + . . .+ b1(t)v

′ = 0,

and hence another substitution w = v′ reduces its order by one.

Exercise 3.51. Solve the equation

(1 + t2)x′′ − 2tx′ + 2x = 0,

if one solution is given by x1(t) = t.

Exercise 3.52. Solve the equation

(2t+ 1)x′′ + 4tx′ − 4x = 0.

Hint: Look for a solution in the form x(t) = ept.

Exercise 3.53. Similarly, the same trick (reduction of order) can be used to solve systems of linear
equations. Solve the system ẋ = A(t)x with

A(t) =

[
t2 −1
2t 0

]
,

if one of the solutions is ϕ1(t) = (1, t2)⊤. Hint: make a substitution x(t) = Q(t)y(t), where Q(t) =(
ϕ1(t) | e2

)
, and e2 = (0, 1)⊤.
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Exercise 3.54. Functions
x1 = t, x2 = t5, x3 = |t|5

solve the differential equation
t2x′′ + 5tx′ + 5x = 0.

Are they linearly independent on (−1, 1)?

Exercise 3.55. Let y and z be the solutions to

y′′ + q(t)y = 0, z′′ +Q(t)z = 0

with the same initial conditions y(t0) = z(t0), y
′(t0) = z′(t0). Assume that Q(t) > q(t), y(t) > 0 and

z(t) > 0 for all t ∈ [t0, t1]. Prove that the function

z(t)

y(t)

is decreasing in [t0, t1].

Exercise 3.56. Prove that two solutions to x′′ + p(t)x′ + q(t)x = 0, where p, q ∈ C(I), that achieve
maximum at the same value t0 ∈ I are linearly dependent on I.

Exercise 3.57. Let x1(t) = 1 and x2(t) = cos t. Come up with a linear ODE, which has these two
functions as particular solutions. Try to find an ODE of the least possible order.

Exercise 3.58. Generalize the previous exercise.

3.9 Linear systems with periodic coefficients

In this section I will consider the systems of the form

ẋ = A(t)x, x(t) ∈ Rk, (3.17)

where A is a continuous periodic matrix function, i.e., there exists T > 0 such that A(t) = A(t+ T )
for all t. The fundamental result about such systems belongs to Floquet and can be formulated in the
following form.

Theorem 3.34 (Floquet). If X is a fundamental matrix solution for (3.17) then so is Ξ, where

Ξ(t) :=X(t+ T ).

Corresponding to each such X there exists a periodic nonsingular matrix P with period T , and a
constant matrix B such that

X(t) = P (t)etB. (3.18)

Proof. I have
Ξ̇(t) = Ẋ(t+ T ) = A(t+ T )X(t+ T ) = A(t)Ξ(t),
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which proves that Ξ is a fundamental matrix solution since detΞ(t) = detX(t + T ) ̸= 0. Therefore,
there exists a nonsingular matrix C such that

X(t+ T ) =X(t)C,

and moreover there exists a constant matrix B such that C = eTB (this matrix is called the logarithm
of B and does not have to be real).

Now define
P (t) :=X(t)e−tB.

Then
P (t+ T ) =X(t+ T )e−(t+T )B =X(t)eTBe−(t+T )B =X(t)e−tB = P (t).

Since X(t) and e−tB are nonsingular, then P (t) is nonsingular, which completes the proof. �

Exercise 3.59. Show that if matrix C is nonsingular then there exists matrix B, possibly complex,
such that eB = C.

Remark 3.35. Actually, if A(t) is real and the system ẋ = A(t)x is considered as 2T -periodic, then
it is possible to find P 1(t) and B1 such that P 1(t+ 2T ) = P 1(t), X(t) = P 1(t) exp(B1t) and B1 is
real. I will leave a proof of this fact to the reader.

The matrix C, which was introduced in the proof, is called the monodromy matrix of equation
(3.17), the eigenvalues ρj of C are called the characteristic multipliers, and the quantities λj such that

ρj = eλjT

are called the characteristic exponents (or Floquet exponents). The imaginary part of the characteristic
exponents is not determined uniquely (recall that the exponent has period 2πi). I can always choose
the characteristic exponents such that they coincide with the eigenvalues of B.

Exercise 3.60. Carefully note that for different X one will get different C. Explain why this does
not influence the conclusions of the theorem and the last paragraph.

Exercise 3.61. Show that the change of variables x = P (t)y for the matrix

P (t) =X(t)e−tB,

where X(t) is the principal matrix solution, turns x = A(t)x in a linear system with constant
coefficients.

The notion of stability verbatim translates to the linear systems with non-constant coefficients. In
particular, it should be clear that the existence of periodic solutions to (3.17) or the stability of this
system are both determined by the eigenvalues of B, because the Floquet theorem implies that the
solutions are composed of products of polynomials in t, eλjt and T -periodic functions. I can formulate,
leaving the details of the proof to the reader, the following
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Theorem 3.36. Consider system

ẋ = A(t)x, x(t) ∈ Rk, A(t) = A(t+ T ), T > 0, A ∈ C(R+;R
k ×Rk), t > 0.

(a) This system is asymptotically stable if and only if all the characteristic multipliers are in
modulus less than one.

(b) This system is Lyapunov stable if and only if all the characteristic multipliers are in modulus
less than or equal to one, and those with one have equal algebraic and geometric multiplicities.

(c) This system is unstable if and only if it has a characteristic multiplier with modulus bigger than
one, or it has a characteristic multiplier with modulus equal to one and its algebraic multiplicity is
strictly bigger than its geometric multiplicity.

It is usually a very nontrivial problem to determine the characteristic multipliers. Sometimes the
following information can of some use.

Since I have, from the equality X(t+ T ) =X(t)eTB, that

det eTB =
detX(t+ T )

detX(t)
,

therefore, due to Liouville’s formula,

det eTB = exp

∫ T

0
trA(τ) dτ = ρ1 . . . ρk,

and

λ1 + . . .+ λk =
1

T

∫ T

0
trA(τ) dτ (mod

2πi

T
) .

Example 3.37. Consider problem (3.17) with

A(t) =

[
1
2 − cos t b

a 3
2 + sin t

]
.

Since I have that ∫ 2π

0
trA(τ) dτ = 4π,

therefore
λ1 + λ2 = 2 > 0,

and hence there exists at least one one-parameter family of solutions to this system which becomes
unbounded when t→ ∞.

Example 3.38. An important and not obvious fact is that the eigenvalues of A(t) , t ∈ R cannot be
used to infer the stability of the system. Consider

A(t) =

[
−1 + 3

2 cos
2 t 1− 3

2 sin t cos t
−1− 3

2 sin t cos t −1 + 3
2 sin

2 t

]
.

Therefore,

λ1 + λ2 = −1

2
.
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Hence, no conclusion can be made about the stability. I can calculate the eigenvalues of A(t), which,
surprisingly, do not depend on t:

µ1,2 = (−1± i
√
7)/4,

which both have negative real part. However, as it can checked directly, the solution

t 7→
[
− cos t
sin t

]
et/2

solves the system, and hence the system is unstable.

Example 3.39. Actually, a converse to the previous example is also true. Consider

A(t) =

[
−11

2 + 15
2 sin 12t 15

2 cos 12t
15
2 cos 12t −11

2 − 15
2 sin 12t

]
.

The eigenvalues can be calculated as 2 and −13. However, the system with this matrix is asymptoti-
cally stable, as can be shown by finding the fundamental matrix solution1.

Unfortunately there exist no general methods to find matrices P (t) and B, and whole books are
devoted to the analysis of, e.g., Hill’s equation

ẍ+
(
a+ b(t)

)
x = 0,

where b(t) = b(t+ π).

Exercise 3.62. Consider the system
ẋ = A(t)x,

where t 7→ A(t) is a smooth T -periodic matrix function, x(t) ∈ Rk.

1. k = 1, A(t) = f(t). Determine P (t) andB in the Floquet theorem. Give necessary and sufficient
conditions for the solutions to be bounded as t→ ±∞ or to be periodic.

2. k = 2 and

A(t) = f(t)

[
a b
c d

]
.

Determine P (t) and B in the Floquet theorem. Give necessary and sufficient conditions for the
solutions to be bounded as t→ ±∞ or to be periodic.

3. Consider now

A(t) =

[
cos t sin t
sin t − cos t

]
.

Note that not only trA(t) = 0 but also all the terms in t 7→ A(t) have the average zero value
through one period. Are the solutions bounded?

Exercise 3.63. Consider a non-homogeneous problem

ẋ = A(t)x+ f(t),

where bothA and f are T -periodic. Prove that if the homogeneous system has no T -periodic vanishing
solution then the non-homogeneous system has one and only one T -periodic solution.

1Wu, M.Y. A note on stability of linear time-varying systems. IEEE Trans. Automatic Control AC-19 (1974), 162
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3.10 Appendix

3.10.1 Jordan’s normal form of a matrix

The theory of linear autonomous ODE is essentially a part of the standard linear algebra curriculum.
A number of theorems become almost obvious as soon as the systems are written in their Jordan’s
normal form. In my teaching experience I did not meet a lot of first year graduate students who would
be able to precisely formulate the main theorem about Jordan’s normal form. For this reason I decided
to include all the details in these notes. In the following I assume that the student is comfortable
with the basic notions of linear algebra, such as vector space, subspace, linear independence, basis,
dimension, linear operator, eigenvalues and eigenvectors, kernel and image of a linear operator.

Recall that if I have a linear operator A : V −→ V on a finite dimensional vector space V over
the field R or C and fix a basis of V , then I can deal (perform calculations) with matrix A, which
is a representation of my operator in the given basis. If I change my basis, matrix A also changes.
For the following I will need the basic fact that if A,A′ are two different representations of the same
linear operator A with respect to two different bases, these matrices are similar, and they are related
as A′ = T−1AT , where T is the matrix of the basis change. The general question is how to find such
a basis in which my matrix A of linear operator A has the simplest form. Of course I will need to
define precisely what is meant by “the simplest form.”

I start working exclusively over C, the main reason for which is that, according to the fundamental
theorem of algebra, the characteristic polynomial of A : Ck −→ Ck has the form

p(λ) = det(A− λI) = (−1)k(λ− λ1)
α1 . . . (λ− λm)

αm , α1 + . . .+ αm = k,

where λj ∈ C are the distinct eigenvalues of A and αj are their corresponding algebraic multiplicities.
The constants

βj = dimker(A− λjI)

are called geometric multiplicities of λj (recall that ker(A − λjI) is the subspace of Ck composed of
vectors x ∈ Ck for which (A − λjI)x = 0, this subspace is called the eigenspace of λj ; according to
the definition of eigenvectors these subspaces are never trivial).

Exercise 3.64. Show that the characteristic polynomial does not depend on a specific representation
A and hence it is correct to talk about the characteristic polynomial of operator A .

Exercise 3.65. Show that 1 ≤ βj ≤ αj for all j.

If I assume that βj = αj for all j (in particular this is true when αj = 1 for all j) then the answer
to my main question is immediate, because I will be able to find a basis in which A is diagonal, and it
is hardly questionable that to be diagonal is a very convenient property of a matrix to deal with, hence
here I assume that “the simplest” means “diagonal.” Since this is an important case, I define A to be
semisimple (from now on I will not distinguish between operator A and its matrix representation A
unless explicitly stated) if βj = αj for all j.

Theorem 3.40. Let A be semisimple. Then there exists a basis of Ck is which A is diagonal.

Proof. Since A is semisimple and the eigenvectors corresponding to different eigenvalues are linearly
independent, as my basis I can take all the linearly independent eigenvectors u1,u2, . . . corresponding
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to λ1, λ2, etc. Since I will end up with exactly k linearly independent eigenvectors T = [u1 | . . . | uk],
they form a basis of Ck and by construction (check it)

AT = TJ ,

where J is diagonal, with the eigenvalues of A on the main diagonal, and each eigenvalue is repeated
according to its algebraic multiplicity. Since T is invertible, I end up with

J = T−1AT ,

i.e., A is similar to the diagonal matrix J , which concludes the proof. �

Theorem above indicates that in the case when A is not semisimple, the things become more
involved.

Recall that we say that finite dimensional vector space V is the direct sum of its subspaces
V1, . . . , Vm if for any v ∈ V it can be written as the sum of vectors from V1, . . . , Vm, i.e.,

v = v1 + . . .+ vm, vj ∈ Vj ,

and this representation is unique. The standard notation is

V = V1 ⊕ . . .⊕ Vm.

For instance, if all eigenvalues of A are distinct, λ1, . . . , λk (which means that αj = βj = 1 for all
j = 1, . . . , k), then

Ck = ker(A− λ1I)⊕ . . .⊕ ker(A− λkI).

Similar equality holds in the semisimple case, but in general (βj < αj for at least one j) I can-
not represent Ck as a direct sum of eigenspaces. I will need something that I will call generalized
eigenspaces.

In the following I consider polynomials of matrices. To wit, for complex polynomial

p(z) = amz
m + . . .+ a1z + a0

the expression p(A) means amA
m + . . .+ a1A+ a0I.

Lemma 3.41. For any A there is non-zero p such that

p(A) = 0.

Exercise 3.66. Prove the lemma. Hint: Construct p explicitly.

Assume now that pmin is a monic (i.e., its leading coefficient is 1) polynomial of minimum degree
such that pmin(A) = 0. Taking into account the long division algorithm for polynomials, I have

Lemma 3.42. Let p(A) = 0 and let pmin(A) = 0 be a monic polynomial of minimal degree. Then
pmin is unique and

p(z) = q(z)pmin(z)

for some polynomial q for which q(A) ̸= 0.
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Exercise 3.67. Prove this lemma.

As a hint to the previous exercise and to the following discussion I would like to note that poly-
nomials are in many respects similar to integers (of course, they both form a commutative ring).
In particular, for univariate polynomials over C it is possible to consider divisors (which are simply
factors), greatest common divisor (gcd) of two non-zero polynomials, and Bésout’s identity, which I
use below.

Due to the proven lemma I define pmin to be the minimal polynomial of A.

Lemma 3.43. Let p(z) = p1(z)p2(z) and gcd(p1, p2) = 1 (i.e., polynomials p1, p2 are relatively prime).
Let A : V −→ V . If p(A) = 0 then

V = ker p1(A)⊕ ker p2(A),

and each subspace ker pj(A), j = 1, 2 is invariant under A (W ⊆ V is invariant under A if for all
v ∈W Av ∈W ).

Proof. First let me prove the invariance. Let v ∈ ker pj(A), which means that pj(A)v = 0. Now
consider u = Av. I have pj(A)u = pj(A)Av = Apj(A)v = A0 = 0, hence pj(A) is invariant.

Now the assumption gcd(p1, p2) = 1 implies (this is Bésout’s identity) that there exist polynomials
q1, q2 such that

q1(z)p1(z) + q2(z)p2(z) = 1,

or
q1(A)p1(A) + q2(A)p2(A) = I.

Let v ∈ Ck be written as (note the order of the vectors in the final sum)

v = q1(A)p1(A)v + q2(A)p2(A)v = v2 + v1.

I claim that vj ∈ ker pj(A) (check it). What is left is to show that there are no other u1 ∈
ker p1(A),u2 ∈ ker p2(A) such that v = u1+u2. I will prove it by contradiction. Indeed, assume that

v = v1 + v2 = u1 + u2,

which implies that
v1 − u1 = u2 − v2 = w ∈ ker p1(A) ∩ ker p2(A),

which implies that
w = q1(A)p1(A)w + q2(A)p2(A)w = 0 + 0 = 0,

that is v1 = u1 and v2 = u2. Hence

V = ker p1(A)⊕ ker p2(A),

as required. �

A significant part of all the preliminary work is done, and finally I can see that if

pmin(z) = (z − λ1)
l1 . . . (z − λm)

lm

is the minimal polynomial of A, then
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Theorem 3.44.
V = ker(A− λ1I)

l1 ⊕ . . .⊕ ker(A− λmI)
lm ,

each ker(A− λjI)
lj is invariant under A, and λj are the eigenvalues of A.

Proof. The first two statements follow directly from the previous lemma.
Consider A : ker(A−λjI)lj −→ ker(A−λjI)lj . Since ker(A−λjI)lj is not trivial (if this was the

case pmin would not be minimal), A must have an eigenvalue as a linear operator acting on a finite
dimensional nontrivial space over C. Let this eigenvalue be λ, i.e., Av = λv, v ∈ ker(A − λjI)

lj . I
have

0 = (A− λjI)
ljv = (λ− λj)

ljv,

and hence λ = λj , i.e., the roots of the minimal polynomial are the eigenvalues of A. In the other
direction, assume that λ is an eigenvalue of A with eigenvector v. I have

0 = pmin(A)v = (λ− λ1)
l1 . . . (λ− λm)

lmv,

so every eigenvalue must also be a root of pmin. �

The subspace ker(A − λjI)
lj is called the generalized eigenspace corresponding to λj , and its

elements are called generalized eigenvectors. It is important to understand that constant lj is the
smallest such constant a that (A− λjI)

a vanishes on any element of ker(A− λjI).

Exercise 3.68. Prove the last claim. Hint: assume that (A − λjI)
a−1 vanishes on all the elements

and reach a contradiction.

Now, if I select a basis for each generalized eigenspace (carefully note that constants lj are not the
numbers of the linearly independent vectors in each generalized eigenspace) and put all these bases
together, I must get a basis of V = Ck. Since each generalized eigenspace is invariant under A, the
matrix for it in this basis will have the block diagonal form

A1

A2

A3

. . .

Am

 ,

where each Aj is a square matrix of dimension dimker(A− λjI)
lj .

Exercise 3.69. Prove the last claim (that the matrix A in this basis is block-diagonal).

What is left is to choose some “simplest” form for each Aj .
Now, since each ker(A− λjI)

lj is invariant I can consider

A : ker(A− λjI)
lj −→ ker(A− λjI)

lj ,

i.e., restrict my operator A on only one generalized subspace. This restriction implies that A has only
one eigenvalue λ and the minimal polynomial is p(z) = (z − λ)l, where l is the smallest integer that
(A− λI)l = 0. Denoting N = A− λI, I have N l = 0. Such operator N (and its matrix) are called
nilpotent.
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It is possible to have two cases.
Fist, let me deal with the simple case that l = k, which means that my minimal polynomial

coincides with the characteristic polynomial. By assumption, there is u such that N l−1u ̸= 0. It
follows that {N l−1u, . . . ,Nu,u} are linearly independent and therefore form a basis of V . The
matrix for N in this basis is 

0 1
0 1

. . .
. . .
. . . 1

0

 .

Exercise 3.70. Prove the last statement.

It follows that matrix A has the form in this basis
λ 1

λ 1
. . .

. . .

. . . 1
λ

 .

Such a matrix is called Jordan’s block.
In general, set of non-zero vectors {u,Nu, . . . ,N l−1u} with N lu = 0 is called Jordan’s chain.
To deal with the remaining second case l < k I have

Lemma 3.45. For any finite dimensional vector space V there exists a basis of V consisting of Jordan’s
chains.

Idea of a proof. One can use induction on the dimension of V . It is clearly true for k = 1. Assume it is
true for all vector spaces of dimension k−1 and below. We need to show that it is also true for k. Note
that sinceN is nilpotent it is not injective and therefore dim imN < k (imA = {y ∈ V : there is x ∈
V, y = Ax}, the image of A). By the induction hypothesis one therefore can find a basis for imN
consisting of Jordan’s chains. Let u,Nu, . . . ,N l−1u be one such chain. Since u ∈ imN , there is
v ∈ V such Nv = u. The same is true for other possible Jordan’s chains. In words, I extend each
of them by 1. I claim that vectors from all Jordan’s chains of the form v,Nv, . . . ,N lv are linearly
independent. I may still have not enough vectors for a basis of V , but I can always add vectors to
my set of Jordan’s chains to form a basis. Let w be such a vector. Then there is a vector p in the
span of vectors from Jordan’s chains that Nw =Np (because Nw is in the span of the image of N).
It follows that q = w − p ∈ kerN , and I add all such linearly independent q to my set of Jordan’s
chains. The resulting collection of vectors is a basis of V . �

Exercise 3.71. Fill in all the details missing in the proof above.

We actually can show even more. As before, let me consider only the case of one eigenvalue λ, and
nilpotent operator N = A − λI. From the theorem above I know that matrix N in the constructed
basis has the block-diagonal form (with a number of possible blocks of size 1 × 1), where each block
is a Jordan’s block.
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Lemma 3.46. The number and the sizes of the Jordan’s block are unique.

Proof. I have that N is an k× k matrix. Assume that dimkerN = β, i.e., the geometric multiplicity
of eigenvalue λ. Then it implies that I must have exactly β Jordan’s blocks. Let β(1) be the number
of blocks of size 1. Then dimkerN2 must differ from dimkerN by β − β(1), and so on, so I get

dimkerN = β,

dimkerN2 = dimkerN + β − β(1) = 2β − β(1),

. . .

dimkerN l+1 = dimkerN l + β − β(1)− . . .− β(l),

where β(l) is the number of blocks of size l × l. Hence all β(l) are defined uniquely. �

Now I see that algebraic multiplicity of eigenvalue λj is the sum of the lengthes of all Jordan’s
chains corresponding to this eigenvalue, its geometric multiplicity is the number of the corresponding
Jordan’s chains, and finally the power lj in the minimal polynomial pmin corresponding to λj is the
length of the longest Jordan’s chain corresponding to λj . Note that even if I know all three constants, I
still have multiple choices for the sizes of Jordan’s blocks in general, and therefore, in most non-trivial
cases I will have to explicitly calculate dimensions of subspaces kerN l for different l.

In summary, I have proved

Theorem 3.47 (Jordan’s normal form). Any complex matrix A is similar to the matrix in a block
diagonal form, each block of which is a Jordan’s block, and the number and sizes of these blocks are
unique.

Since in the notation above lj ≤ αj (where αj is the algebraic multiplicity of λj) then deg pmin ≤
deg pchar, the minimal polynomial divides the characteristic polynomial, and therefore

Theorem 3.48 (Cayley–Hamilton). Let pchar(z) = det(A − zI) be the characteristic polynomial of
A. Then pchar(A) = 0.

Example 3.49. Let

A =

 2 2 3
1 3 3
−1 −2 −2

 .
Direct calculations yield that p(z) = (z − 1)3, that is I have one eigenvalue of algebraic multiplicity
3. Note that it is possible to have three different Jordan’s normal forms in this case. I calculate
A−λI and find that this matrix has rank 1, that is dimker(A−I) = 2, which implies that geometric
multiplicity is 2 and I must have two Jordan’s blocks. Due to small dimension the only choice for the
sizes is 2 and 1 and hence the Jordan’s normal form is1 1 0

0 1 0
0 0 1

 .
I invite the students explicitly compute the generalized eigenvectors and find the basis which leads to
this form.

Finally, due to the computations above the minimal polynomial is pmin(z) = (z − 1)2.
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Example 3.50. Let

A =


1 0 0 0 0
1 −1 0 0 −1
1 −1 0 0 −1
0 0 0 0 −1
−1 1 0 0 1

 .
The characteristic polynomial is p(z) = z4(z−1). So I have eigenvalue 1 with algebraic and geometric
multiplicity 1 that has 1× 1 Jordan’s block and eigenvalue 0 of algebraic multiplicity 4. Its geometric
multiplicity (check it) is 2, and hence I have two Jordan’s chains. It may be the case that one has
length 3 and another 1, or 2 and 2. To see it, I calculate dimkerA2 = 3, which implies that β(1) = 1,
and hence I have one chain of length 3 and one of length 1. The Jordan’s normal form is

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 .
Exercise 3.72. Find Jordan’s normal form for

A =



1 0 0 0 0 0
0 0 0 0 −1 1
−1 −1 1 1 −1 1
0 0 0 1 0 0
0 1 0 0 2 0
0 0 0 0 0 1


To finish the discussion on the Jordan’s normal form, I recall that I worked over C and assumed

that all my matrices can be complex-valued. While dealing with differential equations, matrix A
is often real, but its eigenvalues are not necessarily so. Therefore it would be great to extend the
presented results the real realm. The basic fact here is that if λ is a complex eigenvalue of a real
matrix A then I must have another complex-conjugate eigenvalue λ̄. The corresponding eigenvectors
are also complex-conjugate.

Instead of going through all the details, I will give a hint how it all works by considering two
dimensional example. Specifically,

Lemma 3.51. Let A : R2 −→ R2 have two complex conjugate eigenvalues λ = λ̄ = µ ± iη. Then it
can always be put in the following real Jordan’s form[

µ −η
η µ

]
.

Idea of a proof. By the proven theorem I can always transform my matrix into Jordan’s normal form[
µ+ iη 0

0 µ− iη

]
.
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The last matrix is similar to [
µ −η
η µ

]
,

since [
µ −η
η µ

]
= S

[
µ+ iη 0

0 µ− iη

]
S−1,

for

S =

[
−i 1
−1 i

]
,

which can be checked directly. Hence the conclusion. �

Exercise 3.73. Fill in the missing detail. Specifically you are asked to show that there is real invertible
matrix P that [

µ −η
η µ

]
= PAP−1.

Finally, I can state

Theorem 3.52. For any real A there is real P such that

JR = PAP−1,

where JR is a block diagonal matrix with Jordan blocks for real eigenvalues λ ∈ R as before, and with
Jordan’s blocks 

µ −η 1 0
η µ 0 1

0 0 µ −η . . .

0 0 η µ 1 0
. . . 0 1

µ −η
η µ


corresponding to the complex eigenvalues µ ± iη ∈ C. The number and the sizes of these blocks are
unique.

I will leave the details of the proof as an exercise for a student.

3.10.2 Calculating the matrix exponent

I did not give full details how to compute the matrix exponent for an arbitrary matrix A in the
main text. The student can use the previous section to learn how to use Jordan’s normal form to
calculate eA in the case of multiple eigenvalues. Here I give a brief description of one procedure that
is often convenient for the matrices of not very high order and does not require calculating generalized
eigenvectors. This procedure (interpolation method) actually can be applied to calculate other than
exponent functions of matrices2.

2I am borrowing the description and example from Laub, A. J. (2005). Matrix analysis for scientists and engineers.
SIAM.
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LetA ∈ Rk×k and f(λ) = eλt. My goal is to determine f(A). First I need to find the characteristic
polynomial p for A, p(λ) =

∏m
j=1(λ− λj)

αj , where all λj are distinct. Define

g(λ) = a0 + a1λ+ . . .+ ak−1λ
k−1,

where aj are some constants to be determined. They are, in fact, are the unique solution to k equations:

g(n)(λj) = f (n)(λj), n = 1, . . . , αj , j = 1, . . . ,m.

I claim that f(A) = g(A), the motivation for this is the Cayley–Hamilton theorem (see Theorem
3.48) that says that all powers of A greater than k − 1 can be expressed as a linear combination of
An, n = 1, . . . , k − 1. Thus all the terms of order greater than k − 1 in the definition of the matrix
exponent can be written in terms of these lower powers as well.

Exercise 3.74. Fill in the details in the previous paragraph and prove that g gives the appropriate
linear combination (interpolation) for etA.

Example 3.53. Let

A =

−1 1 0
0 −1 0
0 0 −1

 .
I find p(λ) = −(λ+ 1)3, so m = 1 and α1 = 3. I have

g(−1) = f(−1) =⇒ a0 + a1 + a2 = e−t,

g′(−1) = f ′(−1) =⇒ a1 − 2a2 = te−t,

g′′(−1) = f ′′(−1) =⇒ 2a2 = t2e−t.

Solving this system for aj I get

a2 =
t2

2
e−t, a1 = te−t + t2e−t, a0 = e−t + te−t +

t2

2
e−t,

and hence
etA = g(A) = a0I + a1A+ a2A

2,

which yields e−t te−t 0
0 e−t 0
0 0 e−t

 .
Exercise 3.75. Use the interpolation method to compute

etA = e
t

−4 4
−1 0

.

3.10.3 Topological classification of linear flows

3.10.4 More on the implicit function theorem
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